modeci_mdf.functions.onnx.averagepool(*args, **kwargs)

AveragePool consumes an input tensor X and applies average pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. average pooling consisting of computing the average on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing. The output spatial shape will be following: ` output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1) ` or ` output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1) ` if ceil_mode is enabled

` * pad_shape[i] is sum of pads along axis i `

auto_pad is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following: ` VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - kernel_spatial_shape[i] + 1) / strides_spatial_shape[i]) SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i]) ` And pad shape will be following if SAME_UPPER or SAME_LOWER: ` pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + kernel_spatial_shape[i] - input_spatial_shape[i] ` The output of each pooling window is divided by the number of elements (exclude pad when attribute count_include_pad is zero).